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ABSTRACT

Predictors of novice learning in simulation environments were investigated in the

domain of statistics. The first objective was to clarify the relation between intellectual

ability and working method (e g. orientation and systematical orderliness), and to
determine the effect on learning of working method, independent of intellectual ability. A

second objective was to determine whether instructional aid by presenting students with a

well-structured task, instead of unguided learning by discovery, might compensate for

lack of ability or a poor working method. Twenty-seven relatively high or low intelligent

first year university stu,ns worked in either a structured or an unstructured learning
environment. Thinking-aloud protocols were analysed on the quality of working method.

The results indicated that the working method of high intelligent subjects was
significantly better than that of low intelligent subjects, but that working method also is a

strong predictor of learning, independent of intellectual ability. No learning effects due to

structuredness of learning environment could be detected.
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The novice-expert paradigm has yielded a vast amount of research on differences

between novice and expert problem solving (Larkin, McDermott, Simon & Simon, 1980;

Chi, Feltovich & Glaser, 1981; Schoenfeld & Herrmann, 1982; Anderson, 1985; Chi,

Glaser & Farr, 1988; Thibodeau Hardiman, Dufresne & Mestre, 1989). Besides
quantitative differences (e.g. number of errors and time on task), a number of qualitative

differences have been found. Experts not only have more knowledge at their disposal, but

their knowledge is also better organized (Chi, (laser & Rees, 1982) and more of a

procedural kind (Anderson, 1985; Jansweijer, Elshout & Wielinga, 1990). Before
actually acting, experts pass through an elaborate qualitative analysis of the problem

through which schemata of forward problem solving strategies are activated. Novices on

the other hand, analyse a given problem in terms of superficial features (Chi et al., 1982)

and are inclined to act immediately and unsystematically (Elshout, 1987; Jansweijer et al.,

1990). This lack of metacognitive control results in a poor problem representation to

which only weak problem solving strategies like means-ends analysis and working

backwards can be applied (Glaser & Bassok, 1989; Glaser, 1990).

Not all novices are limited to equally poor problem solving behavior (Schoenfeld &

Hen-mann, 1982). Contrary to genuine novices, an 'expert-novice' tends to act more

expert-like by orientating on a problem, working more systematically and more
accurately, and by evaluating more during the problem solving process (Elshout, 1985).

Furthermore, Chi et ai. (1989) demonstrated that better students elaborated more on the

subject matter by generating self-explanations during the learning process. Deep
orientation, systematical orderliness, evaluation and elaboration are the characteristics of a

proficient working method. Such an effective working method is a metacognitive skill, or

in terms of Glaser (1990) a self-regulatory ability, which is brought in by the student in

order to structure the learning process (Veenman, Elshout & Bierman, l989b).
Metaphorically spoken, an effective working method might be regarded as a student's

compass and skeleton-map on a voyage of discovery in a new domain. Without such an

adequate outfit a novice expedition is likely to run ashore, especially for low intelligent

students (Veenman, Elshout & Bierman, 1991).

There are three models for describing the relation between intellectual ability and

working method. The first model regards an effective working method as a manifestation

of intellectual ability. According to this model, working method cannot have a predictive

value for learning, independent of intellectual ability. In a second, contrasting model

working method and intellectual ability are independent predictors of learning. The last

model thus is a mixed model, in which working method has a surplus value on top of

intellectual ability, for the prediction of learning, while high intelligent novices tend to

exhibit a better working method.

Empirical studies do not consistently support one of these models. Veenman and

Elshout (Veenman et al., 1989b; Elshout & Veenman, 1990) reported the results of an

experiment in the domain of heat theory, that corroborated the first model. They had high
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and low intelligent subjects working for about an hour in a computer simulated Heat Lab

while thinking aloud. Tape-recorded thinking-aloud protocols were analysed on the

quality of working method. High intelligent subjects showed both a more proficient

working method and a significantly better learning performance than low intelligent

subjects. Working method correlated significantly with learning measures, but when

intelligence was partialed out these correlations approximated zero. Some support for the

second or the third model was gathered by Swanson (1990), though the research was

primarily concerned with problem solving instead of learning. Children, who were

selected on high or low aptitude (as measured by a cognitive abilities test) and on high or

low metacognitive knowledge (by means of a questionnaire), had to perform two

Piagetian tasks. Swanson's results showed that high-metacognitive individuals

outperformed low-metacognitive individuals regardless of their aptitude level, indicating

that metacognitive skills can compensate for cognitive ability. Swanson's experimental

design, which forces intelligence and metacognitive knowledge to be orthogonal, does

not permit to decide whether the second or the third of the three models is favored by

these results. Recent research in the domain of electricity (Veenman & Elshout, 1990)

however, provided support for the mixed model. High and low intelligent subjects

worked for several hours in a simulated Electricity Lab, learning the principles of Ohm's

law. The results indicated that, while working method and intellectual ability correlated

moderately, working method contributed significantly to the learning process,
independent of intellectual ability. Clearly, the relation of working method with

intellectual ability is an intricate one that remains to be clarified.

Realistic learning environments involve learning to solve complex and knowledge-

rich problems which are representative for everyday problem solving. Simulations, used

as an instructional tool, allow for learning by doing and learning by discovery under

restricted realistic conditions. They are said to enable students to bridge the gap between

reality and abstract knowledge, to improve motivation and enhance learning by an active

student interaction, and in general to provide students with an appropriate cogritive and

affective context for learning (de Jong, 1991). Essential for simulation as instructional

tool is the continuous presence of learner activities. Students need to engage in exploring

a domain thoroughly by generating hypotheses and testing these hypotheses by actively

designing and performing experiments in the simulation environment (Reimann, 1989;

Goodyear, Njoo, Hijne & van Berkum, 1990). Because of its explorative nature, learning

with simulations involves complex problem solving, inductive reasoning and discovery

learning, which puts a high cognitive demand on the student (Goodyear et al.. 1990; de

Jong, 1991). A large number of alternative actions might overwhelm students and result

in a trial-and-error mode of behavior (van Berkum & de Jong, 1990). On the other hand,

students might also adopt a waiting attitude, not using the opportunities for learning that

the simulation environment offers (Njoo & de Jong, 1989) or not being able to use them
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properly due to limited intellectual resources or a poor working method (Veenman et al.,

1991). It is generally conceived that a completely learner controlled situation is
problematic, especially for the weaker students (Goodyear et al., 1990). As a
consequence, de Jong and others (van Berkum & de Jong, 1990; de Jong, 1991) take the

position that learning in simulation environments should be accompanied with at least

some instructional guidance.

Instructional aid by presenting students with a well-structured simulation
environment, might compensate for lack of ability or a poor working method. The

conceptual difficulties of low intelligent students, due to the complexity of the subject

matter, could be relieved by prestructuring the information that is to be processed. By

providing them with pre-set experiments that elaborate on essentials of the domain,

students should be urged to formulate and evaluate hypotheses, to vary the values of

variables systematically, and to reconsider possible misunderstandings (Collins &
Stevens, 1983). Instructional aid though, should not be limited to non-specific
interventions (e.g. passively providing students with pm-set experiments or simply

structuring the subject matter without specific feedback), since in several studies these

interventions did not improve learning (Veenman et al., 1989b; Elshout & Veenman,

1990; Veenman & Elshout, 1990). Even when guided by instruction, the learning

activities of low intelligent students invariably needed explicit corrections (Veenman et

al., 1991). Consequently, low intelligent students, who might also suffer from a poor

working method, are expected to profit more from a structured learning environment in

which explicit feedback is included.

In a new experiment, which was des:gned in another domain to avoid domain

specific effects, the concept of correlation wat focussed on as an appropriate study-theme

for our subjects. The correlation between two dichotomic variables is a topic with

sufficient complexity to bring forth an elaborate learning process, but still relates easily to

evPryday experiences (Inhelder & Piaget, 1958). In discovering principles of correlation

by experimenting with data-sets, intellectual ability and working method are likely to play

;in important role. Furthermore, instructional guidance combined with extensive domain-

specific feedback is expected to steer the learning process, which might be profitable to

particularly low intelligent students.

METHOD

Subjects.
Some months prior to the experiment intellectual ability was assessed by a series of ability

tests, representing several components of the Structure-of-Intellect model (Guilford,

1967). Those first-year psychology students whose composite scores deviated at least

one standard deviation from the mean (M= 17.47, sd= 3.88, N= 459), were denominated
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as either high or low intelligent. Fourteen high and thirteen low intelligent students who

recently had followed a introductory statistics course, participated in the experiment.

Though all of them were familiar with some general principles of correlation, they were
ignorant of the phi-coefficient.

Learning conditions.
A statistics environment was implemented in Course of Action, an authoring language for

Macintosh computers (Veenman, Balk & Bierman, 1989a). Data-sets, derived from

everyday examples, could be altered by the student and the correlation could be calculated

by the program on request. By estimating correlations, students first had to determine

which values contributed positively to the correlation and which values contributed

negatively. Next, they had to discover a simple method for inclusion of both positive and

negative values into a correlational measure: the Piaget formula (adapted from Inhelder

Piaget, 1958). This formula, based on a simple additive model, disregards the skewness

of distributions. Finally, students had the opportunity to experience the effects of
distributional skewness by determining the constraints for application of the Piaget

formula. They were presented subsequently with a general formula, the phi-coefficient
which is based on a more complex, multiplicauve model.

Simulation environments were implemented separately for a structured learning

condition with instructional guidance and for an unstructured condition that allowed for

unguided discovery learning. The data-sets in the structured simulation environment were
presented in two by two diagrams throughout the course, while students in the
unstructured environment had to reorganize the data by themselves. Furthermore, a

computer assisted instruction shell overlaid the structured simulation environment. This

CAI shell served as a tutor for teaching and explaining parts of the subject matter,
provided students with guidance during experimentation, and offered students the
opportunity to jump backwards for consulting previously given information.
Accordingly, the construction and interpretation of two by two diagrams was explicitly

taught in the structured environment, while students in the unstructured condition only

received a short explanation about the series of data displayed. During estimation of

correlations, students in the structured environment received specific feedback if their

estimation was not proximate. This feedback included a second diagram constructed from

the estimated correlation, that was to be compared with the orienal diagram and its true

correlation. During experimentation, students in the structured condition were required to

generate a hypothetical formula and to enter a value calculated by that formula, before the

true correlation for a certain diagxam was revealed to them. General feedback was given

about the extent the calculated correlation deviated from the true correlation. However, the

entered values were also matched by the program to some singular respons patterns (for

instance the tendency to neglect the data that contribute to the correlation negatively) and

specific feedback was added to these responses. Furthermore, students in the structured



condition received explicit instructions about how to perform a number of 'telling'

experiments. An example of such an instruction was to make one cell of thediagram zero

and then, step by step, raise the value of that cell with one point whilst lowering the other

one on the diagonal of the diagram (thus keeping the value of Piaget's formula constant

and changing the phi-coefficient systematically; see the appendix). Students in the

unstructured condition on the other hand, had to design their own experiments and

received no feedback. While formulas in the unstructured condition were presented

without further comment, they were explained thoroughly in the structured condition with

questions addressing students on their understanding of the subject matter. Actually, the

structured condition provided students with extensive support during the learning process

in the simulated environment.

Procedure.
The subjects were assigned randomly to either the structured or the unstmctured learning

condition. The unstructured condition contained 6 low and 7 high intelligent subjects,

while 7 low and 7 high intelligent subjects were engaged in the stnictured condition.

Before entering one of the learning environments, all subjects received a short instruction

about operating the Macintosh computer and a general refreshment course in basic

statistics. During their work in the simulation environment, which took about 2 to 3

hours, thinking-aloud protocols of all subjects were tape-recorded. Time on task was not

controlled, but was included in the study as a concomitant variable. Student notes, if any,

were preserved in order to be analysed in relation to the protocols. The protocols were

scored for quality of working method (the five scales being Orientation Activities,

Systematical Orderliness, Accuracy, Elaboration and Evaluation Activities) and the level

of learning reached. The analyses were conducted by two judges who received no prior

information about the student's intelligence-test scores. They performed the analyses

together, arguing until agreement was reached.

Aspects of the Working Method were scored separately from the protocol segments

corresponding to three subdivisions in the learning program: learning to estimate

correlations, discovering principles of the Piaget formula and exploring constraints for

using the Piaget formula. These protocol segments appeared to have the substantial length

which is required for protocol analysis. Quality of Orientation Activities was judged on

indications of analysing a problem, building a mental model of the task and generating

predictions. Judgements of Systematical Orderliness were based on the quality of

planning and systematical execution of those plans. Criteria for Accuracy were precision

of calculation, correct usage of quantities and the avoidance of negligent mistakes.

Evaluation Activities were judged on monitoring and checking, while judgements of

Elaboration were concerned with generating explanations, relating the subject matter and

recapitulating. All aspects were rated on a ten-point scale and average scores on the five

sub-scales were computed for each subject.
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The level of learning reached, was scored from the thinking-aloud protocols by

subdividing the learning program in coherent parts and rating the corresponding protocol

segments on a ten-point scale. Five parts were discriminated and scored on mastery of the

specific subject matter: construction of a diagram or table, estimation of correlations,

learning the principles of the Piaget formula, learning the distributional effects on the

Piaget formula and calculation of the correlation coefficient. For each subject an average

score was calculated.

Problems.
In a pretest-posnest design subjects were presented with a series of problems prior to and

shortly after the experimental course. After a delay of three weeks the subjects were

offered another series of problems as a retention test. The problems dealt explicitly or

implicitly with the correlation between two dichotomous variables in everyday situations.

Explicit problems actually asked subjects to ralculate the correlation before drawing a

conclusion. Implicit problems on the other hand, did not ask for a calculation but

requested a justified conclusion. Hence, the explicit problems measured the acquired

knowleuge and competency in correlational calculation, while the implicit problems

additionally measured transfer of learning. Solving the problems of both types required a

fair amount of qualitative as well as quantitative reasoning about correlation. An implicit

problem was for instance:

In research of the relation between job-responsibility aad stress-experience

sixty subjects are included, of whi 30 percent is having a responsible job.

A stress-questionnaire shows that 60 percent of all subjects are experiencing

job-related stress, while eight subjects with a responsible job are experiencing

stress. What is your conclusion about the ?elation between job-responsibility

and stress-experience? Explain your answer.

The pretest consisted of only 4 implicit problems. Both the posttest as well as the

retention test were composed of 4 implicit and 5 explicit problems, which were presented

in a jumbled sequence. The 4 implicit problems corresponding to the pretest items, will be

denominated as respectively posttest 1 and retention test 1. The 5 problems with explicit

instruction will be referred to as posttest 2 and retention test 2.

Thinking-aloud protocols of the pretest, posttest and retention test problems were

analysed prior to the course-protocols by the two 'blind' judges. The problems were

scored one at the time for all subjects. Each problem was rated as a school mark on a ten-

point scale, as is usual in Dutch education (with 5 being the highest fail-score and 6 being

the lowest pass-score). The judgements were based on three criteria for solving the

problem correctly: converting the problem statement to a correct diagram or table, (partial)

calculation of the correlation coefficient and drawing a justified conclusion. A small
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miscalculation was not severely penalized. For each subject an average score on the

pretest, posttest 1, posttest 2, retention test 1 and retention test 2 was calculated.

RESULTS

Problems.
The internal consistency of the pretest was rather low (alpha was .39), presumably

indicating that the subjects have only slight initial knowledge of two by two contingency

relations. Though, in accordance with this interpretation, the general level of pretest

scores was poor, an Anova showed a significant effect of intellectual ability with

F(1,23)=8.00 (p<.0l ), indicating that high intelligent subjects possessed slightly more

knowledge about correlations to start with. The correlation between intelligence and

pretest scores was .50 (.36 after correction for extreme groups of intellectual ability,

following the procedures of Gulliksen (1961)).

The reliabilities of the posttest were .84 and .83 for respectively posttest 1 and

posttest 2. Anova's on both posttests showed robust intelligence effects (see Table 1)

with high intelFgent subjects performing better than low intelligent subjects. No effects

due to learning condition or interaction were obtained.

The reliabilities of retention test I and 2 were respectively .86 and .87. Strong

intelligence effects were established with Anovis on both retention tests (see Table 1).

Again, no learning condition effects were obtained for both tests, but the interaction effect

was significant for retention test 2 (see Table 1). However, this interaction effect certainly

did not confirm the hypothesis that low intelligent subjects would profit more from the

structured learning environment compared to high intelligent subjects. The scoresof low

intelligent subjects in the unstructured condition actually surpassed those of low

intelligent subjects in the structturd condition (see Table 3).

Table 1. Results of Anova's on the learning measures.

Learning

measures.

IQ Learning condition Interaction

Posttest 1 22.52 (p<.0001) 0.01 0.00

Posuest 2 25.36 (p<.0001) 0.53 0,05

Ret. test 1 # 12.60 (p=.0018) 0.09 0.31

Ret. test 2 # 47.51 (p<.0001) 0.29 6.56 (p.02)

Level of learning 17.06 (r,.0004) 1.35 1.35

Except for # with F(1,22), elsewhere F(1,23) is applicable.

1.1=1.
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An Anova with repeated measures on the implicit problems (pretest, posttest 1 and

retention test 1) with intellectual ability as the between-persons source of variance and

time of testing as the within-persons factor, evidently showed a significadt effect of

intellectual ability with F(1,24)=21.29 (p<.0001). Furthermore, significant effects were

obtained for time of testing (F(2,48)=4.34, p.02) and the interaction of intellectual

ability with time of testing (F(2,48).58, p=.003). The mean scores in Table 2 clearly

indicate that the high intelligent subjects learned more form the computerized course than

low intelligent subjects, whic t. difference persisted after the three weeks delay.

Table 2. Means and standard deviations (in parentheses) of the implicit problems.

Pretest Posuest 1 Retention test I

LIQ HIQ LIQ HIQ LIQ HIQ

Unstructured 4.13 4.79 3.71 5.96 4.35 5.96

condition. (0.82) (0.51) (1.07) (1.29) (1.68) (1.42)

Structured 4.00 4.82 3.75 6.01 3.89 6.11

condition. (0.69) (0.69) (0.76) (1.63) (1.05) (1.33)

Table 3. Means and standard deviations (in parentheses) of Posttest and Retention test with explicit

calculation-instruction.

Posuest 2 Retention test 2

L1Q HIQ L1Q H19

Un.strwured 4.73 6.97 4.88 6.23

condition. (1.31) (0.58) (0.76) (0.56)

Structured 4.51 6.57 3.91 6.86

condition. (1.57) (0.66) (1.08) (0.64)

Level of learning.
The internal consistency of the protocol-scored level of learning was satisfactory (alpha

was .75). Correlations with other measures of learning ranged from .57 to .67. An

Anova on the level of learning scores revealal a cignificant effect of intellectual ability

(see Table I ) with the scores of high intelligent subjects exceeding those of low intelligent

0
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subjects. No effects of learning condition or interaction were established. Because the

means in Table 4 might suggest an effect of learning conditions for low intelligent

subjects in particular, an Anova was perfonned on their separated scores. However, the

result of F(1,11)=2.15 (p=.17) confirmed the general conclusion that effects due to

learning condition failed to appear.

Table 4. Means and standard deviations (in parenthests) of Level of learning scores.

Level of learning

Lig HIQ

Unstructured 4.87 6.60

condition. (0.98) (0.97)

Structured 5.63 6.60

conditkm. (0.89) (0.48)

Working Method.
Alpha reliabilities for the five sub-scales of Working Method were .88, .85, .63, .81 and

.88 for respectively Orientation Activity, Systematical Orderliness, Accuracy, Evaluation

Activities and Elaboration. All subjects were real novices, that is to say, they showed

rather poor Orientation activities. However, a significant effect of intellectual ability with

F(1,23)=27.56 (p<.0001) indicated that high intelligent subjects orientated more than low

intelligent subjects. As for Systematical Orderliness, subjects especially differed in the

systematic implementation of a carefully designed sequence of data manipulations. High

intelligent subjects were rated significantly higher on Systematical Orderliness than low

intelligent subjects (F(1,23)=21.34, p<.0001). Though the intelligence effect on

Accuracy was not significant (F(1,23)=3.65, p<.07), there is a minor suggestion for high

intelligent subjects to work somewhat more accurately than low intelligent subjects. For

Evaluation Activities also an intelligence effect in favour of high intelligent subjects was

established (F(1,23)= 15.76, p=.0006). Elabora.ion, which often took the form of re-

orientation after feedback was given, showed a similar effect of intellectual ability w;th

F(1,23)=19.10 (p=.0002).
A general Working Method score was composed of all scores on the distinct

measures together with two additional measures for completeness of diagrams drawn and

tidiness of student-notes. The internal consistency of this composite score was high

(alpha was .96). An Anova on Working Method scores showed a strong effect of

intellectual ability with F(1,23)=21.20 (p<.0001). Working method correlated .68 with

11



intellectual ability (.52 after correction for selection of extreme groups). The correlations

of Working Method with the learning measures were high and, except for Posttest 1,

these correlations remained high after intellectual ability was partialed out (see Table 5).

Furthermore, after correcting for selection of extreme groups of intellectual ability, all of

the partial correlations of Working Method with the learning measures were highly

significant (see Table 5).

Table 5. Results of the correlational analyses.

Learning

measures.

W.M. W.M. IQ W.M. part.cor.

IVO ibt:4

Pretest (156 ** 0.50 ** 0.36 *

Posuest 1 0.65 ** 0.72 ** 0.32 0.56 ** 0.50 **

Posuest 2 0.76 ** 0.71 ** 0.55 ** 0.56 ** 0.67 **

Rel.. test 1 0.74 ** 0.66 ** 0.54 ** 0.50 ** 0.65 **

Ret. test 2 0.81 ** 0.82 ** 0.62 ** 0.69 " 0.74 **

Level of learn. 0.85 ** 0.64 ** 0.74 ** 0.49 ** 0.80 **

'W.Mt. means working method; 'corrected means correctcd for selection of extreme groups of IQ;
* p<.05; ** p<.01.

Time on task.
The differences in time on task between both learning conditions were considerable

(F(1,23)=11.88, p<.003). Subjects in the structured condition spent on the average 131

minutes working through the program, while it took subjects in the unstructured
condition only 100 minutes on the average. However, correlations between time on task

and learning measures were invariably low (ranging from -.23 to .11).

DISCUSSION

The results of this study confirmed once more that learning by doing is mediated by

both intellectual ability and an effective working method. Furthermore, it was shown that

high intelligent subjects exhibited an evidently better working method than low intelligent

subjects. However, working method also proved to be a strong predictor of learning,

apart from intellectual ability. These results clearly fit the mixed model, in which high

intelligent novices tend to have a better working method but in which working method

has a unique predictive value for learning too.

12
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Extensive structuring of the learning environment did not ir prove learning, nor

could an Aptitude-Treatment Interaction between intellectual ability and structuredness of

learning environment be estabFshed. These results are in line with previous research of

Veenman and Elshout (Veenman et al., 1989b; Elshout Veenman, 1990; Vcenman &

Elshout, 1990). Though the instructional shell of the structured ezndition orienated from

a CAI tradition, some intelligent features made a considerable amount of branching

possible as a consequence of student reactions. However, adding specific feedback to

guided disan zry learning did not compensate sufficiently for lack of ability or a poor

working method. One possible reason for the absence of learning effects due to

structuredness of learning environment emerged from the thinking-aloud protocols. By

not reading an instruction thoroughly and as a const..41ience doing the wrong things, by

not completing a sequence of tasks and by skipping 1.he feedback, some students reduced

the structured learning environment to an unstnictured one. A poor working method may

have prevented them from taking advantage of the structured learning environment. Very

similar passive attitudes of students were observed by Njoo and de Jong (1989).

Clearly, most novices lack the prior knowledge, domain-specific knowledge as well

as knowledge about how to perform an experiment, which is considered a prerequisite for

successful learning in simulation environments by Goodyear et al. (1990). But for low

intell*nt novices it is the accumulation of knowledge deficiencies, limitf.xl intellectual

resources and a poor working method that causes them to go astray during their Odyssey

in a simulated environment. Even instructional guidance and feedback cannot provide

sufficient help if the conceptual complexity of the task is making too high demands on the

student.

Since working method appears tc have a unique predictive value to learning,

metacognitive mediation directed at raising the level of working method, might improve

novice learning. This mediation is now being built into the electricity lab which was used

by Veenman and Elshout (1990) and is expected to enhance learning through the

improvement of working method.
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APPENDIX

Two by two cmtingency diagram:

a
.

,

b

c

,

d

a+c b+d

a+b

c+d

In this two by two contingency diagram the four observations a, b, c and

d represent the possible combinations L;.. two dichotomous variables: a is positive on both

variable 1 and variable 2, b is positive on variable 1 and negative on variable 2, c is

negative on variable 1 and positive on variable 2, and d is tiegative on both variable 1 and

variable 2.

Piaget formula:

(a+d) - (b+c)

n

With n equals (a+b+c+d). This formula, adapted from Inhelder & Piaget (1958), is based

on a simple additive model and disregards the skewness of distributions. Piagees formula

is only applicable if the marginal frequencies (a+b), (c+d), (a+c) and (b+d) are equal.

Hence, a precondition for using Piaget's formula is a 50 percent distribution for both

dichotomous variables.

Phi coefticjent:

ad - bc

1.1(a+b)(c+d)(a+c)(bd)

Calculation with the phi coefficient always results in the same correlational value as

calculation by the product-moment correlation coefficient would, even if the marginal

frequencies are unequal.
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